A study on Energy Sourcing and Storage

Auroville, India

Scope of the study:

- Analyse different energy system configurations in Auroville
- Study the viability for Lithium Ion batteries
- Analyse energy systems in a sample of Greenbelt Communities
- Estimate the cost of improving energy systems in the Greenbelt

Contributors: Clementine, George, Jinsu, Martin, Michael, Nitin, Segar, Tim, Toine, Vikram & Vimal Thanks to: Auroville Electrical Service, Auroville Energy Products, Cynergy, MiA Studio, Solar Service & Sunlit Future

Cost-benefit analysis of different configurations of energy systems

Types of energy systems

Туре	Grid	Solar panels	Inverter	Batteries	Generator
Α	✓		✓	✓	
В	√ (primary)	√ (backup)	\checkmark	✓	
С		✓	✓	✓	
D	√ (backup)	√ (primary)	✓ (grid tied)	✓	
E	✓	✓	✓ (grid tied)		
F	✓	✓	√ (grid tied)	✓	
G	✓	✓	√ (grid tied)	✓	✓

Technical parameters – Our findings

	Type A	Type B	Type C	Type D	Type E	Type F	Type G
Domestic load profile							
Efficiency of the system (%)	75	69	57	46	84	82	83
Downtime (min/week)	0	0	791	0	284	0	0
Office load profile							
Efficiency of the system (%)	79	88	87	89	91	91	91
Downtime (min/week)	0	0	0	0	154	0	0

- Efficiency of batteries = 70 to 80%
- Efficiency of inverter (DC to AC conversion) = 75 to 90%
- Efficiency of inverter (AC to DC conversion) = 70 to 90%

Economic parameters – Our findings

INR/kWh 16.0 14.3 14.0 12.7 12.0 9.8 10.0 8.0 7.0 6.8 5.9 6.0 3.4 4.0 2.0 0.0 Type A Type B Type C Type D Type E Type F Type G

Cost per kWh delivered by the system

Social parameters – Our findings

System type / Ranking	Type A	Туре В	Туре С	Type D	Type E	Type F	Type G
Lifestyle	1	2	3	4	2	1	5
Acceptability	5	4	3	5	3	2	1
Level of comfort	5	3	4	3	5	1	2
Energy security	1	2	2	1	3	1	1
Economics	3	4	4	2	1	4	4
Final ranking	4	4	5	4	3	1	2

Legend: 1 is most optimum, 5 is least optimum

Environmental parameters – Our findings

A comparison of two battery chemistries

Batteries selected for comparison:

- Flooded Lead Acid batteries ("FLA")
- Sealed Lead Acid or Valve-Regulated batteries ("VRLA")
- Lithium-ion batteries ("Li-ion")

Technical parameters of Batteries

	FLA	VRLA	Li-ion
Weight of a 100Ah, 12V battery	23 kg	31 kg	14 kg
Gas emission	Oxygen & hydrogen	Gases are recombined & vented	No gas emission
Expected no. of cycles	1200 cycles @ 50% DoD	2000 cycles @ 50% DoD	3000-5000 cycles @ 80% DoD
Advised maximum discharge rate	C/20	C/5	С
Efficiency	72.90% (measured)	76.20% (measured)	>90%

Economic parameters – Our findings

Cost per kWh delivered by the battery

Social parameters

Parameter	FLA	VRLA	Li-ion
Max depth of discharge	50%	50%	Flexible
Minimum state of charge	80%	80%	Can be operated at shallow charge
Storage while not in use	High self-discharge, performance affected	High self-discharge, performance affected	Low self-discharge; performance not affected
Type of storage room	Ventilated room	Shaded space	Not applicable
Routine maintenance	Distilled water	None	None
Full top up charge	Monthly	Monthly	6 months

Environmental parameters – Our findings

On recycling:

- Industry dominated by small-scale and backyard recyclers
- Lead acid batteries broken down without following any regulation
- Prices of shipping batteries back to manufacturer is very high
- No recycling facilities for Li-ion yet in India
- Storage of Li-ion is not toxic, unlike lead acid batteries

Environmental parameters – Our findings

Our Recommendations

- Replace FLA batteries with VRLA batteries when they die out
- Whenever possible, connect the system to the grid to enable under sizing and maximise the use of each system
- Install a pilot centralized system of storage with Li-ion batteries

Our Recommendations

Annual gains of battery conversion for all system types, as calculated by us:

Evaluating Solar Photovoltaic Systems in the Greenbelt

Assessment

Technical parameters, our findings:

- 16% of the solar panels are not cleaned regularly
- 46% of the panels do not have easy access for cleaning
- 40% of the installations have dust and dirt on the panels
- 20% of the installations have natural or man-made shade on the panels
- 90% of the installations use FLA batteries (inefficient, short life, toxic)

Economic parameters, our findings:

- Current value of systems in the sample communities is Rs. 32 lakhs
- Battery is the most expansive component, 70% of total cost
- Net investment for replacing all the systems estimated to 22 lakhs

Assessment

Social parameters, our findings:

- Regarding system sufficiency:
 - System is not fulfilling energy needs for 12 residents (55%)
 - Suspected causes: lack of cleaning of the panels, incorrect angle, insufficient battery maintenance
- Regarding connecting to the grid:
 - 7 residents (32%) are against
 - 8 residents (36%) undecided
 - 7 residents (32%) favourable
- Regarding centralized system:
 - 6 residents (27%) are against a centralized system
 - 6 residents undecided
 - 10 residents in favour

Additional observations:

- No monitoring system
- No correlation between size of the system and no. of users
- Lack of security

Assessment

Environmental parameters, our findings:

Our recommendations for the GreenBelt

- Install a monitoring system for each installation
- Sponsor maintenance of systems
- Strengthen Solar Fund
- Replace the FLA batteries
- Expand size of the system (if mandatory)
- Convert to grid-interactive system
- Centralized system of sourcing and storage at a community scale

Our recommendations

Annual savings due to battery conversion in stand-alone systems

Our recommendations

Gains of conversion to grid-connected systems

Cost estimation for Greenbelt

Cabling: Rs. 40 lakhs (aerial) or Rs. 37 lakhs (underground)

Connecting to the grid: Rs. 1.7 crores (for 130 installations in the Greenbelt)

Replace all the batteries with VRLA: Rs. 88 lakhs

Install VRLA, audit each building, install monitoring systems: Rs. 1.15 crores

Create a pilot community with centralized storage (with Li-ion): Rs. 57 lakhs

A Unit of Auroville Foundation Saracon, Kottakarai, Irumbai, Auroville 605111, India info@aurovilleconsulting.com www.aurovilleconsulting.com